Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486288

RESUMO

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , DDT , Namíbia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos
2.
Immunogenetics ; 75(6): 517-530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853246

RESUMO

Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Peste/genética , Peste/epidemiologia , Tanzânia/epidemiologia , Imunogenética , Yersinia pestis/genética , Sifonápteros/genética , Murinae/genética , Anticorpos
3.
Parasit Vectors ; 15(1): 436, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397152

RESUMO

BACKGROUND: Although the Republic of Namibia has significantly reduced malaria transmission, regular outbreaks and persistent transmission impede progress towards elimination. Towards an understanding of the protective efficacy, as well as gaps in protection, associated with long-lasting insecticidal nets (LLINs), human and Anopheles behaviors were evaluated in parallel in three malaria endemic regions, Kavango East, Ohangwena and Zambezi, using the Entomological Surveillance Planning Tool to answer the question: where and when are humans being exposed to bites of Anopheles mosquitoes? METHODS: Surveillance activities were conducted during the malaria transmission season in March 2018 for eight consecutive nights. Four sentinel structures per site were selected, and human landing catches and human behavior observations were consented to for a total of 32 collection nights per site. The selected structures were representative of local constructions (with respect to building materials and size) and were at least 100 m from each other. For each house where human landing catches were undertaken, a two-person team collected mosquitoes from 1800 to 0600 hours. RESULTS: Surveillance revealed the presence of the primary vectors Anopheles arabiensis, Anopheles gambiae sensu stricto (s.s.) and Anopheles funestus s.s., along with secondary vectors (Anopheles coustani sensu lato and Anopheles squamosus), with both indoor and outdoor biting behaviors based on the site. Site-specific human behaviors considerably increased human exposure to vector biting. The interaction between local human behaviors (spatial and temporal presence alongside LLIN use) and vector behaviors (spatial and temporal host seeking), and also species composition, dictated where and when exposure to infectious bites occurred, and showed that exposure was primarily indoors in Kavango East (78.6%) and outdoors in Ohangwena (66.7%) and Zambezi (81.4%). Human behavior-adjusted exposure was significantly different from raw vector biting rate. CONCLUSIONS: Increased LLIN use may significantly increase protection and reduce exposure to malaria, but may not be enough to eliminate the disease, as gaps in protection will remain both indoors (when people are awake and not using LLINs) and outdoors. Alternative interventions are required to address these exposure gaps. Focused and question-based operational entomological surveillance together with human behavioral observations may considerably improve our understanding of transmission dynamics as well as intervention efficacy and gaps in protection.


Assuntos
Anopheles , Malária , Animais , Humanos , Namíbia/epidemiologia , Mosquitos Vetores , Comportamento Alimentar , Malária/epidemiologia , Malária/prevenção & controle
5.
PLoS One ; 12(3): e0174554, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358899

RESUMO

Rodent pests are especially problematic in terms of agriculture and public health since they can inflict considerable economic damage associated with their abundance, diversity, generalist feeding habits and high reproductive rates. To quantify rodent pest impacts and identify trends in rodent pest research impacting on small-holder agriculture in the Afro-Malagasy region we did a systematic review of research outputs from 1910 to 2015, by developing an a priori defined set of criteria to allow for replication of the review process. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We reviewed 162 publications, and while rodent pest research was spatially distributed across Africa (32 countries, including Madagascar), there was a disparity in number of studies per country with research biased towards four countries (Tanzania [25%], Nigeria [9%], Ethiopia [9%], Kenya [8%]) accounting for 51% of all rodent pest research in the Afro-Malagasy region. There was a disparity in the research themes addressed by Tanzanian publications compared to publications from the rest of the Afro-Malagasy region where research in Tanzania had a much more applied focus (50%) compared to a more basic research approach (92%) in the rest of the Afro-Malagasy region. We found that pest rodents have a significant negative effect on the Afro-Malagasy small-holder farming communities. Crop losses varied between cropping stages, storage and crops and the highest losses occurred during early cropping stages (46% median loss during seedling stage) and the mature stage (15% median loss). There was a scarcity of studies investigating the effectiveness of various management actions on rodent pest damage and population abundance. Our analysis highlights that there are inadequate empirical studies focused on developing sustainable control methods for rodent pests and rodent pests in the Africa-Malagasy context is generally ignored as a research topic.


Assuntos
Agricultura , Produtos Agrícolas/parasitologia , Controle Biológico de Vetores , Roedores , África , Animais , Humanos
6.
PLoS One ; 7(3): e32410, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479325

RESUMO

The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species.


Assuntos
DNA Mitocondrial/genética , Haplótipos , Filogenia , Musaranhos/genética , Animais , Citocromos b/genética , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Especiação Genética , Variação Genética , Geografia , Namíbia , Análise de Componente Principal , Musaranhos/anatomia & histologia , Musaranhos/classificação , África do Sul , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...